Vector quantization

- **Example:** Binary Splitting, $M=8$

 - centroid of the entire training data
 - perturb centroid
 - cluster w.r.t. new centroids
 - compute new cluster centroids

 Advantage: Tree search can be used to reduce search complexity and computations
Vector quantization

- **Tree search VQ** (in general, does not have to be a binary tree)

 \[M = 8 \]

 - 2 comparison vectors \[2 \text{ computations & 1 comparison} \]
 - 4 comparison vectors \[2 \text{ computations & 1 comparison} \]
 - 8 code vectors \[2 \text{ computations & 1 comparison} \]

 - In general:
 - \# computations = (\# splits at each node) * (\# stages)
 - \# comparisons = (\# stages)

 - For binary tree: \# computations = \(2 \cdot \log_2(M) = 6\) for \(M = 8\)

 - Memory = \(\sum_{i=1}^{\text{#stages}} s^i = \frac{s - s^{(\text{#stages}+1)}}{1-s} \); where \(s = \# \text{ splits at each node}\)

 - Advantage: Reduces search complexity and computations
 - Disadvantages: Memory requirements \(\Rightarrow\) almost twice storage needed
Vector quantization

- **Exhaustive search VQ**
 (conventional unconstrained)

 \[M = \text{codebook size} = 2^B \]
 \[N = \text{Vector size} \Rightarrow N \text{ pixels/vector} \]

 \[N \text{ pixels} \]

 \[\begin{array}{c}
 1 \\
 2 \\
 \vdots \\
 M \\
 \end{array} \]

 \[\Rightarrow \text{Memory} = M \times N = 2^B \times N \]

 where \(B \) = bits per codebook index (no entropy coding)

 \[r = \text{bit rate} = \frac{\# \text{bits/pixel (sample)}}{\# \text{pixels per vector}} = \frac{B}{N} \]
Vector quantization

\[r = \text{bit - rate} = \frac{\text{\# bits/pixel (sample)}}{\text{\# pixels per vector}} = \frac{\text{\# bits per codebook index}}{\text{\# pixels per vector}} = \frac{B}{N} = \frac{\log_2(M)}{N} \]

⇒ **Codebook size** \(M = 2^{rN} \) ⇒ exponential dependency on bit-rate \(r \) and vector size \(N \)

⇒ **Memory** = \(2^{rN} \times N \)

\# distance computations = \(M = 2^{rN} \)

\# comparisons = \(M - 1 = 2^{rN} - 1 \)
Vector quantization

- Problem: As vector size N increases, complexity increases much more than performance improves; performance increases at only algebraic rate, i.e. at a polynomial (linear, quadratic, …) rate
 - \Rightarrow VQ limited to very small vectors ($N=4\times4=16$ is popular)
 - \Rightarrow not much improvement in performance
 - \Rightarrow complexity/performance tradeoffs are usually not good

- To overcome complexity barrier and eliminate exponential dependency, impose certain structural constrains on the VQ codebook
 - \Rightarrow encoding complexities and/or memory requirements are algebraically dependent on bit-rate r and/or vector size N
 - \Rightarrow inferior RD performance for same r and N compared to unconstrained
 - \Rightarrow reduction in complexity usually more than offsets the degradation in performance \Rightarrow good complexity/performance tradeoffs
Vector quantization

Examples of Constrained VQs

- tree-structured VQs (TSVQ) (as known as multi-stage since search done in stages)
- Product VQs (e.g., Mean-extraction, Gain-shape)
- Lattice VQs
- Multistage Residual VQ (RVQ)

To improve performance without increasing vector size N, incorporate memory into VQ process.

Examples of constrained VQs with memory

- Finite-state VQ (FSVQ)
- Trellis VQ
Vector quantization

- Tree-structured VQ (TSVQ)
 - Codebook search and generation done in stages (multistage VQ)
 - Same as binary splitting but tree does not need to be binary
 - Employs a tree-structured VQ ⇒ search complexity becomes linear instead of exponential (but more memory needed)
 - Other practical advantages:
 ✓ Suitability for progressive transmission
 ✓ Lower sensitivity to channel noise
 ✓ Could be easily used as a component of a variable rate compression system
 ✓ Main weakness: memory requirements can be twice that of unconstrained VQ ⇒ still put severe limitation on vector size and/or bit-rates
Vector quantization

- **Mean-extraction VQ (Mean-residual VQ)**
 - Basic principle:
 - Remove the mean (or average, DC component)
 - Quantize and send the mean separately
 - Quantize the residual using a VQ codebook
 ⇒ helps to reduce codebook size
 - To encode:
 1. Subtract mean
 2. VQ
 3. Send mean (scalar quantized)
Vector quantization

• Gain-shape VQ
 ➢ Basic principle:
 ✓ like above, but normalize vectors and send a gain instead of mean. So here the gain (or “energy”) of the vector is computed and quantized
 ✓ Note: Can combine mean-extraction and gain-shape
Vector quantization

- **Multistage Residual VQ (RVQ)**
 - Commonly referred to as Residual VQ or Multistage VQ
 - Another less common name is Cascade VQ
 - Consists of several VQ stages with codebook designed to code residual vectors
 - Typical RVQ structure

- To encode: send addresses from each stage
- To reconstruct: add up the codevectors retrieved from corresponding address/codebooks
Vector quantization

- Overall codebook constrained to being the direct sum of smaller codebooks
- What's nice about RVQ?
 - Assume \(L \) stages
 - Assume each VQ stage has \(m \) codevectors
 - Overall codebook size:
 - By taking different combinations of codevectors from the different stages, one can represent \(m \times m \times \ldots \times m = m^L \) codevectors (may be large)
 - Required storage:
 - How many vectors to store? \(L \times m \) (may be manageable)

Result:
- We can represent \(m^L \) codevectors by storing only \(L \times m \) codevectors
- Ability of RVQ to employ larger codebooks
Vector quantization

- Finite-State VQ (FSVQ)
 - FSVQ is a finite-state machine with a VQ codebook for each state (multi-codebook approach)
 - FSVQ consists of a finite collection of VQs, where each successive source vector is encoded using a VQ codebook determined by the current encoder state

Example
Vector quantization

- For an input x, the index transmitted is the one that minimizes the distortion of the current state VQ codebook (nearest neighbor using current state VQ)
- Good quality can be achieved by exploiting correlation between adjacent blocks

But:
- Increase in memory required to store the VQ codebooks for all the states
- Generated state sequence (which minimizes current state VQ codebook distortion) does not necessarily result in minimization of the overall distortion introduced by the state sequence
Vector quantization

- Trellis VQ (corresponds to an FSVQ with a finite delay)
 - One way to overcome aforementioned problem is to use Trellis VQ, which allows “delayed decision encoding”, i.e., the FSVQ tries every possible sequence of finite length \(L \) and picks the one that results in the overall minimum distortion
 - A finite delay introduced to increase performance
 - Issues: Encoder complexity can become large
 - Solution: employ a small number of states in conjunction with predictive techniques (predictive trellis encoder).