Subband Decomposition using Filter Banks

The analysis section consists of a set of filters (filter bank)
Subband Decomposition using Filter Banks

• Properties
 ➢ Progressive Hierarchical Transmission
 ➢ Redundancy reduction since image divided into almost mutually exclusive frequency bands (subband images which are inverse FT of the frequency bands) which have little mutual information in common (almost orthogonal)
 ⇒ Remaining redundancy mostly confined to each band
 ⇒ Redundancy reduction by orthogonalization
 ➢ Can exploit perceptual properties: HVS more sensitive to low frequency than to high frequency
 ⇒ coarser quantization in high-frequency bands
 ⇒ well suited for “perceptual coding”
Subband Decomposition using Filter Banks

• Filter banks (used in analysis/synthesis section)
 - Filter bank systems consist of an analysis section and a synthesis section:
 - Analysis section decomposes the input signal into subband signals
 - Synthesis section combines subband signals into the output reconstructed signal
 - If reconstructed signal is identical to input signal except for a possible delay, i.e., $x_r(n) = x(n-n_0) \Rightarrow$ perfectly reconstructing filter bank
 - If the total sampling rate in all the subbands (filter bank channels) is the same as the Nyquist sampling rate of the input signal ⇒ critically down-sampled filter bank ⇒ downsampling/upsampling factor equals number of channels
 - For some applications and for coding in particular, it is desirable to have critically downsampled perfectly reconstructing (or near perfectly reconstructing) filter banks
Subband Decomposition using Filter Banks

- **1D Description:** General N-Channel Filter bank

```
x(n)  \rightarrow \begin{array}{c}
      H_0(\omega) \\
      H_1(\omega) \\
      \vdots \\
      H_{N-1}(\omega) \\
    \end{array}
\rightarrow \begin{array}{c}
      \downarrow R \\
      \downarrow R \\
      \downarrow R \\
      \downarrow R \\
    \end{array}
\rightarrow \begin{array}{c}
      \text{Code} \\
      \text{Code} \\
      \text{Code} \\
      \text{Code} \\
    \end{array}
\rightarrow \begin{array}{c}
      \uparrow R \\
      \uparrow R \\
      \uparrow R \\
      \uparrow R \\
    \end{array}
\rightarrow \begin{array}{c}
      G_0(\omega) \\
      G_1(\omega) \\
      \vdots \\
      G_{N-1}(\omega) \\
    \end{array}
\rightarrow \sum \rightarrow x_r(n)
```

- BPF’s
- downsampler
- Code
- upsampler
- BPF’s

Decimator

Interpolator
Subband Decomposition using Filter Banks

- Critically downsampled $\Rightarrow R = N$
- Perfect reconstruction $\Rightarrow x_r(n) = x(n-n_0)$
 $\Rightarrow h_{FB}(n) = \delta(n-n_0)$
 $\Rightarrow H_{FB}(\omega) = e^{-j\omega n_0}$

✓ Subbands must form a “tiling” of the 1D or MD frequency domain without any gaps (and usually without overlap that cause redundancy)

✓ When using critical downsampling, the structure of each subband must be such that, when replicated, it forms a “tiling” of the 1D of MD frequency domain (without gaps and also usually without overlap except special types of overlap without redundancy)

Example: $N = 4$

![Diagram of subbands with frequencies H0, H1, H2, H3]
Subband Decomposition using Filter Banks

- 2D Description: Use separable filters, i.e.
 \[H_{ij}(\omega_1,\omega_2) = H_i(\omega_1)H_j(\omega_2); \quad i=0,\ldots,N-1; \quad j=0,\ldots,N-1 \]
 \[\Rightarrow \text{gives 16 bands (commonly used number)} \]
 - In practice we use Quadrature Mirror Filters (QMFs)
 - QMFs are two band filters

 \[h_1(n) = (-1)^n h_0(n) \Rightarrow \text{need to design only } H_0 \]

\[|H_0(\omega)|^2 + |H_1(\omega)|^2 = 1; \quad H_1(\omega) = H_0(\pi - \omega) \]
Subband Decomposition using Filter Banks

✓ Two-band systems are very simple and are often used

For perfect or near perfect reconstruction use QMFs. QMFs have the property that:

- Critical downsampling: QMFs decompose signal into 2 bands of equal width that can be downsampled by 2.

- Perfect Reconstruction: $x_r = x$ for ideal QMFs (perfect reconstruction)

Note: $x_r \approx x$ for designed QMFs (near perfect reconstruction)

Not able to achieve $|H_0(\omega)|^2 + |H_1(\omega)|^2 = 1$ in practice

$|H_0(\omega)|^2 + |H_1(\omega)|^2$ Distortion
Subband Decomposition using Filter Banks

- QMF filter banks widely used (Johnston, ICASSP 1980)
- Two band filter banks can be used to implement filter banks with more bands by using them successively in a tree structure. (We can get higher frequency resolution by using a tree structure, we thus can split each half-band into smaller bands)

Subbands are further subdivided by passing them through additional half-band filter banks after they have been downsampled.
Subband Decomposition using Filter Banks

- Subband bandwidth halved in each pass, making this a trivial approach for implementing uniform filter banks (constant Q filter banks) and octave band filter banks (non-uniform) using an incomplete binary tree

\[x(n) \rightarrow H_0(\omega) \rightarrow 2\downarrow \rightarrow H_0(\omega) \rightarrow 2\downarrow \rightarrow H_0(\omega) \rightarrow 2\downarrow \rightarrow H_1(\omega) \rightarrow 2\downarrow \rightarrow H_1(\omega) \rightarrow 2\downarrow \rightarrow X(\omega) \]
Subband Decomposition using Filter Banks

- 2D Filter banks for subband coding
 - Problems
 - Difficult design: geometries constraints, PR
 - Difficult implementation
 - Separable Filter banks used
 - 2D Filter banks reduced to cascade of 1D Filter banks
 - For subband image coding, split rows (i.e. use horizontal filtering) then the columns (or vice versa)
Subband Decomposition using Filter Banks

Horizontal processing

Vertical processing

\[x(n) \]

\[H_0(\omega_1) \]

\[H_1(\omega_1) \]

\[\omega_2 \]

\[\pi \]

\[\frac{\pi}{2} \]

\[0 \]

\[\omega_1 \]

\[H_0(\omega_2) \]

\[H_1(\omega_2) \]

\[H_0(\omega_2) \]

\[H_1(\omega_2) \]

\[2\downarrow \]

\[LL \]

\[LH \]

\[HL \]

\[HH \]
Subband Decomposition using Filter Banks

Example: Consider a 2-band split (rows, then columns)

1. \(X_{\text{DFT}} = \)
 \[
 \begin{array}{c|c}
 \hline
 \text{LP} & \text{HP} \\
 \hline
 \text{LP} & \text{HP} \\
 \hline
 \end{array}
 \]
 Take each row and put into 2-band split

2. Filter columns of result, \(Y \):

 \[
 \begin{array}{c|c}
 \hline
 \text{LP} & \text{HP} \\
 \hline
 \text{LP} & \text{HP} \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \hline
 \text{LL} & \text{LH} \\
 \hline
 \text{HL} & \text{HH} \\
 \hline
 \end{array}
 \]

 By continuing successively ⇒

 Low in row \(\uparrow \) \hspace{1cm} High in row \(\uparrow \) \hspace{1cm} High in column
Image Filtering

- Note on filtering images

\[x(n_1, n_2) \rightarrow H(\omega_1, \omega_2) \rightarrow y(n_1, n_2) \]

 Observation: We have an increase in total number of pixels as a result of filtering, which is not desirable. We need method to avoid this.
Image Filtering

- **Method 1: Use circular convolution** $x \ast_{\text{circular}} h$
 - Result same as extending image periodically and doing a linear convolution then keeping the samples in the main period of size $N \times N$
 - Usually in here we have discontinuity which introduces more error and visual artifacts near image border (leftmost)
 - Also in subband coding, we must code a discontinuity which results in more error (harder to do since less correlation)
Image Filtering

- **Method 2: Use symmetric extension**

 ✓ **Product with period** $2N$
 ✓ If filter is symmetric (commonly used), then the result is symmetric ⇒ only N samples are required for representation
 ✓ Filtering may be performed using symmetric convolution based on the DCT ⇒ desirable since DCT is standard and available on chip.
 - **Complexity is the same for both methods but symmetric extension performs better** (in a subband image coder in particular) since it forces edges to be correlated (smooth transition) ⇒ easier to code
 - **Constraint to remember**: filter must be linear phase ⇒ $h(n_1,n_2)$
 conjugate symmetric
Subband Decomposition using Filter Banks

- Note on subband coding configurations:
 - Uniform band split (constant Q Filter banks)
 Example: 16 bands

 - Non-uniform band split (Octave-band Filter bank)
Multirate Signal Processing Basics - Review

- Highlights of Multirate Signal Processing
 - **Downsampler**
 - In **time domain**: \(y(n) = x(Rn) \)
 - Form \(y(n) \) by taking blocks of \(R \) samples; keep first sample of each block and discard the remaining \(R-1 \) samples (always start block at sample \(n = 0 \))
 - In **frequency domain**:
 \[
 Y(\omega) = \frac{1}{R} \sum_{r=0}^{R-1} X\left(\frac{\omega}{R} + \frac{2\pi r}{R}\right)
 \]
 - attenuation
 - scaling
 - aliasing
Multirate Signal Processing Basics - Review

- **Decimation**

\[y(n) = r[Rn] = \sum_{m} h(m)x(Rn - m) \]

\[Y(\omega) = \frac{1}{R} \sum_{r=0}^{R-1} H\left(\frac{\omega}{M} + \frac{2\pi r}{M}\right)X\left(\frac{\omega}{M} + \frac{2\pi r}{M}\right) \]

- **Upsampling**

\[\text{Meaning: insert } M-1 \text{ zeros between each 2 input samples (Always start at sample } n = 0) \]
Multirate Signal Processing Basics - Review

✓ **Time domain:**

\[
y(n) = \begin{cases}
 x\left(\frac{n}{R}\right), & n = 0, \pm R, \pm 2R, \ldots \\
 0, & \text{otherwise}
\end{cases}
\]

\[
y(n) = \sum_{l=-\infty}^{\infty} x(l) \delta(n - lM)
\]

✓ **Frequency domain:**

\[
Y(\omega) = X(R\omega)
\]

No attenuation here, only scaling of the Fourier Transform.
Multirate Signal Processing Basics - Review

✓ Interpolation

\[y(n) = \sum_{m=0,\pm R,\pm 2R,\ldots} x\left(\frac{m}{R}\right)h(n-m) \]

or

\[y(n) = \sum_{l=-\infty}^{\infty} x(l)h(n-lM) \]

✓ Frequency domain

\[Y(\omega) = X(R\omega)H(\omega) \]

imaging \hspace{1cm} \text{removes unwanted images}