Image Enhancement and Image Restoration

• Image Enhancement
 ➢ Objective: accentuate or improve appearance of features, for subsequent analysis or display (possibly, but not necessarily degraded by some phenomenon).
 ➢ Examples of features: edges, boundaries, dynamic range and contrast.
 ➢ Examples of applications:
 ✓ TV: enhance image for viewer (image quality, intelligibility, visual appearance).
 ✓ Preprocessing for machine identification.
 ➢ Enhancement is not necessarily needed because of degradation but can be used possibly to remove degradation.
Image enhancement and Image Restoration

- **Blurred or faint edges**
 - Sharp edges

- **Low contrast or dynamic range**
 - Modify low dynamic range

- **Noise**
 - Remove noise
Image Enhancement and Image Restoration

- Image Restoration
 - Objective: Removal or reduction of known degradations in an image
 - Examples of degradations: blurred image, where blurring caused by known phenomenon; known noise properties; degradation and geometric distortion and nonlinearities due to sensor or environment.

 ![Filter of camera](image1) ![Low resolution or blurring due to camera or camera motion](image2) ![Increase spatial resolution or sharpen](image3) ![Inverse process](image4)
Image Enhancement and Image Restoration

- Image Restoration

Distortion is due to known process.

- More knowledge then enhancement and this knowledge is exploited to correct degradation.

- Objective is to make restored image resemble the original image.
Image Enhancement

- **Objective:** Make processed image better in some sense than unprocessed image ⇒ ideal desired image not well defined (not known) and depends on problem context.
 - **Examples:**
 - Images in space have often floating dust ⇒ original image has dust in it which appears as a noise ⇒ removing this “noise” is enhancement, not restoration.
 - An original undegraded image cannot be further restored but can be enhanced.
- **Main difficulty:**
 - Often difficult to quantify the criteria for enhancement.
 - Objective of image enhancement is dependent on the application context (application-dependent) ⇒ the criteria for enhancement are often subjective or too complex to be easily converted to useful objective measures ⇒ image enhancement algorithms tend to be qualitative and ad hoc.
Image Enhancement

• Types of distortions to correct:
 - Blur (Blurring due to camera motion, defocusing, …)
 - Noise (assumed to be additive often for simplicity, although not necessarily the case).
 - Contrast
 - Examples:
 - Space photography
 - Underwater photography
 - Film grain noise
Image Enhancement

• Basic Tools to achieve objective:
 ➢ Contrast and dynamic range modification
 ➢ Noise smoothing
 ➢ Edge detection
 ➢ Image interpolation (motion estimation)
 ➢ Pseudocoloring
Contrast and Dynamic Range Modification

- Contrast stretching
 - Degradation is commonly due to poor lighting.
 - Image probability distribution function (pdf) has narrow peak ⇒ poor contrast.

- Image intensities are clustered in a small region ⇒ available dynamic range is not very well utilized.
Contrast and Dynamic Range Modification

- Possible solution: increase overall dynamic range
 - ⇒ resulting image would appear to have a greater contrast
 - ⇒ expand the amplitudes from a to b to cover available intensity range.

\[
p(x_{\text{new}})
\]
Contrast and Dynamic Range Modification

- **Idea:** Gray scale or intensity level of an input image $x(n_1, n_2)$ is modified according to a specific transformation (function) $f(\cdot)$.

- **Note:** $f(\cdot)$ is usually constrained to be a monotonically non-decreasing function of $x \Rightarrow$ ensures that a pixel with higher intensity than another will not become a pixel with a lower intensity in output image x_{new}.

- Typical stretching operator:

$$
x_{\text{new}} = \begin{cases}
\alpha x, & 0 \leq x \leq a \\
\beta(x - a) + \alpha a, & a \leq x \leq b \\
\gamma(x - b) + \beta(b - a) + \alpha a, & b \leq x \leq L
\end{cases}
$$
Contrast and Dynamic Range Modification

✓ Specific desired transformation depends on the application
 Example: compensation of display non-linearity ⇒ most suitable transformation depends on display non-linearity.

✓ In most applications, a good or suitable transformation can be identified by computing and analyzing the histogram of the input image to be enhanced.
 – The histogram is a scaled version of the image pdf.
 – The histogram gives pdf when scaled by the total number of pixels in the image.
Histogram Modification and Equalization

- **Definition:** The histogram of an image \(h(x) \) represents the number of pixels that have a specific intensity \(x \Rightarrow \text{number of pixels as a function of intensity } x \).

\[
h(x) = \text{scaled version of pdf } p(x)
\]

\[
\text{pdf } p(x) \approx \frac{h(x)}{\text{Total number of pixels in image}} = h_n(x)
\]

Normalization ensures that

\[
\sum_{x=0}^{L} h_n(x) = 1, 0 \leq x \leq L
\]
Histogram Modification and Equalization

- Remarks:
 - Histogram modification methods popular because computing and modifying histogram of an image requires little computations.
 - Experienced person can easily determine needed transformation by analyzing histogram characteristics. But if too many images ⇒ automatic method is desired.
 - For typical natural images, the desired histogram has a maximum around the middle of the dynamic range and decreases slowly as the intensity increases or decreases.

- Problem: Determine $f(\cdot)$ such that $h_{output}(x_{new}) = h_d(x_{new})$
Histogram Modification and Equalization

- **Histogram equalization**: special case of histogram modification where

 \[h_d(x) = \text{constant} \]

 Redistribute pixels by assigning pixels uniformly to the given levels.

\[
\text{constant} = \frac{\text{Total number of pixels in image}}{\text{Number of intensity levels} (L_{\text{max}} - L_{\text{min}} + 1) \text{ in dynamic range}}
\]

- **For a 256×256 image, with 256 intensity levels:**

 \[
 \text{const} = \frac{(256)^2}{256} = 256 \quad \text{pixels assigned to each level}
 \]

- **How can we do assignment?**
Histogram Modification and Equalization

- **Cumulative method for histogram equalization**
 - Histogram equalization \(\Rightarrow\) desired histogram is constant at all levels.
 - **Problem**: Find transformation \(x_o = f(x_i)\) such that that \(h_{output}(x_o) = \text{const}\)

\[
\text{const} = \frac{\sum_{i=x_{\text{min}}}^{x_{\text{max}}} h(x_i)}{L} = \frac{\text{Total number of pixels}}{\text{Number of levels}}
\]

If normalized histogram \(\Rightarrow\) \(\sum_{i=x_{\text{min}}}^{x_{\text{max}}} h(x_i) = 1 \Rightarrow \text{const} = \frac{1}{L} \Rightarrow \text{uniform distribution}\)
Histogram Modification and Equalization

Solution:

✓ Compute input pdf

\[p_i(x) = \frac{h_i(x)}{\sum_{x=x_{\min}}^x h_i(x)} = \text{normalized histogram} \]

✓ Choose

\[f(x_i) = F(x_i) = \sum_{x=0 \text{ or } x_{\min}}^{x_i} p_i(x)dx = p(x \leq x_i) = \text{cumulative probability distribution of } x_i \]

+ scaling needed

✓ Why?

if \[y = F(x_i) = \int_0^{x_i} p_i(x_i)dx_i \Rightarrow y \text{ uniformly distributed between } (0,1) \]

⇒ histogram uniformly distributed

⇒ need also to scale \(y \) because \(y \in (0,1) \) instead of \((0,L-1)\) or \((L_{\min},L_{\max})\)
Histogram Modification and Equalization

✓ **Note:** if $y = F(x_i) = \int_0^{x_i} p_i(x_i)dx_i \Rightarrow y$ uniformly distributed between (0,1)

Proof:

$\text{Prob}[y \leq a] = \text{Prob}[x_i \leq F^{-1}(a)] = F(F^{-1}(a)) = a$

where $0 \leq a \leq 1 \Rightarrow y$ is uniformly distributed
Histogram Modification and Equalization

✓ Since x_i is a discrete variable, integral is replaced by summation:

$$y = \sum_{x=x_{\text{min}}}^{x_i} p_i(x)$$
only approximately uniformly distributed (because of discretization)

$\Rightarrow y_{\text{min}}$ not necessarily 0 since $y_{\text{min}} = p(x_i \leq x_{\text{min}}) = p_i(x_{\text{min}})$

✓ Scaling can be done as follows

$$y = \sum_{x=x_{\text{min}}}^{x_i} p_i(x)$$

$$x_o = \text{Round} \left[\frac{y - y_{\text{min}}}{1 - y_{\text{min}}} (L_{\text{max}} - L_{\text{min}}) + L_{\text{min}} \right]$$

$$y = y_{\text{min}} \Rightarrow x_o = L_{\text{min}}$$

$$y = 1 \Rightarrow x_o = L_{\text{max}}$$
Histogram Modification and Equalization

- **Procedure:** $x_k, k=0, \ldots, L-1 =$ input amplitude levels
 $y_k, k=0, \ldots, L-1 =$ output amplitude levels

1. Compute the histogram of the image to be improved.
2. Normalize histogram;
 - Normalize amplitudes so that the sum of all values is equal to one and you have a pdf, $p_i(\cdot)$.
 - $0 \leq x_k \leq 1$ – rescale input amplitude
3. Compute
 $$y_k = R\left(\sum_{l=0}^{k} p_i(x_l)\right) \quad \text{where} \quad R\{\cdot\} \text{ - round to next level}$$
4. Move bins in x_k to locations in y_k.
5. Scale y_k to desired amplitude range (linear mapping).

Note: Resulting images have more contrast but appear somewhat unnatural \Rightarrow better use non-uniform $h_d(x)$.
Histogram Modification and Equalization

- **Example:**

\[y_0 = R\{p_i(x_0)\} = R\{0.14\} \approx \frac{1}{7} \]

\[y_1 = R\left\{\sum_{l=0}^{1} p_i(x_l)\right\} = R\{0.14 + 0.25\} = R\{0.39\} \approx \frac{3}{7} \]

\[y_2 = R\{0.39 + 0.2\} = R\{0.59\} \approx \frac{5}{7} \]

\[y_3 = R\{0.59 + 0.15\} = R\{0.74\} \approx \frac{6}{7} \]

\[y_4 = R\{0.74 + 0.1\} = R\{0.84\} \approx \frac{6}{7} \]

\[y_5 = R\{0.84 + 0.07\} = R\{0.91\} \approx 1 \]

\[y_6 = R\{0.91 + 0.05\} = R\{0.96\} \approx 1 \]

\[y_7 = R\{0.96 + 0.04\} = R\{1.0\} = 1 \]
Histogram Modification and Equalization

\[P_d(y_k) \]

\[0 \leq y_k \leq 1 \]
Histogram Modification and Equalization

• If input and output range from 0 to L-1 – procedure can be modified as follows:

• **Procedure**: \(x_k = k; \ k=0,\ldots, L-1 = \text{input amplitude levels} \)
 \(y_k; \ k=0,\ldots, L-1 = \text{output amplitude levels} \)
 1. Compute the histogram of the image to be improved.
 2. Normalize histogram;
 ✓ Normalize amplitudes so that the sum of all values is equal to one and you have a pdf, \(p_i(\cdot) \).
 3. Compute
 \[
 y_k = R \left((L-1) \sum_{l=0}^{k} p_l(x_l) \right)
 \]
 where \(R\{\cdot\} \) - round to next level
 4. Move bins in \(x_k \) to locations in \(y_k \).
 5. Scale \(y_k \) to desired amplitude range (linear mapping).

Note: Resulting images have more contrast but appear somewhat unnatural ⇒ better use non-uniform \(h_d(x) \).
Histogram Modification and Equalization

- **Example:**

 \[y_0 = R\{7 p_i(x_0)\} = R\{7(0.14)\} = 1 \]
 \[y_1 = R\left\{7 \sum_{l=0}^{1} p_i(x_l)\right\} = R\{7(0.14 + 0.25)\} = 3 \]
 \[y_2 = R\{7(0.39 + 0.2)\} = R\{7(0.59)\} = 5 \]
 \[y_3 = R\{7(0.59 + 0.15)\} = R\{7(0.74)\} = 6 \]

 \[y_4 = R\{7(0.74 + 0.1)\} = R\{7(0.84)\} = 6 \]
 \[y_5 = R\{7(0.84 + 0.07)\} = R\{7(0.91)\} = 7 \]
 \[y_6 = R\{7(0.91 + 0.05)\} = R\{7(0.96)\} = 7 \]
 \[y_7 = R\{7(0.96 + 0.04)\} = R\{7(1.0)\} = 7 \]

\[L = 8 \]

Find \(y_k \) such that \(x_k \) maps into \(y_k \):

\[y_k = R\left\{L \sum_{i=0}^{k} p_i(x_l)\right\} = R\left\{7 \sum_{i=0}^{k} p_i(x_l)\right\} \]
Histogram Modification and Equalization

\[P_\alpha(y_k) \]

\[0.05 \quad 0.10 \quad 0.15 \quad 0.20 \quad 0.25 \]

\[0 \quad 1 \quad 3 \quad 5 \quad 6 \quad 7 \]

\[y_k; 0 \leq y_k \leq 7 \]
Histogram Modification and Equalization

Original Image

Equalized Image
Histogram Modification and Equalization

• General histogram modification

Compute \(h_i(x_k) \xrightarrow{\text{Normalize to get}} p_i(x_k) \); Let \(F_i(x_k) = \text{input cdf} \)

Let \(h_D(y_k) \xrightarrow{\text{Normalize to get}} p_D(y_k) \); Let \(F_o(y_k) = \text{desired output cdf} \)

\(x_k; k=0,\ldots,L = \text{input amplitude levels} \)

\(y_k; k=0,\ldots,L = \text{output amplitude levels} \)
Histogram Modification and Equalization

- We want to transform x_k with pdf $p_i(x)$ into y_k with pdf $p_D(y_k)$

\[
\begin{align*}
 x_k \overset{\text{with pdf } p_i(x)}{\longrightarrow} & \quad t_k \overset{\text{uniformly distributed}}{\longrightarrow} \quad F^{-1}_i(t_k) \overset{\text{input cumulative distribution function}}{\longrightarrow} y_k \quad \equiv \\
 F^{-1}_o(F_i(x_k)) \overset{\text{output cumulative distribution function}}{\longrightarrow} & \quad y_k
\end{align*}
\]

\[F_i(x_k) = \sum_{l=0}^{k} p_i(x_l) = \text{input cumulative distribution function}\]

\[F_o(y_k) = \sum_{l=0}^{k} p_o(y_l) = \text{output cumulative distribution function}\]

Note: $F_o^{-1}(x) = x$ for equalization since cdf linear when y_k uniformly distributed
Histogram Modification and Equalization

✓ **Note:**

\[t_k = F_i(x_k) \text{ as in histogram equalization} \]

\[y_k = F_o^{-1}(t_k) \Rightarrow t_k = F_o(y_k) \]

\[\Rightarrow F_o(y_k) = F_i(x_k) \Rightarrow \text{compute } h_o(y_k) \text{ such that } F_o(y_k) = F_i(x_k) \]
Histogram Modification and Equalization

- **Procedure:**
 1. Compute and normalize amplitude for input histogram $h_i(x_k)$ to get $p_i(x_k)$ (no need to scale the range).
 2. Normalize amplitude of desired histogram $h_o(y_k)$ to get $p_o(y_k)$.
 3. Compute
 \[
 F_i(x_k) = \sum_{l=0}^{k} p_i(x_l); \quad k = 0, \ldots, L - 1
 \]
 \[
 F_o(y_k) = \sum_{l=0}^{k} p_o(y_l); \quad k = 0, \ldots, L - 1
 \]
 $L = \text{number of desired intensity levels}$
 4. For each input level x_k; $k=0, \ldots, L-1$
 1. Find output level y_k such that
 \[
 F_o(y_{k-1}) < F_i(x_k) \leq F_o(y_k)
 \]
 2. Output histogram can be simply obtained by assigning bins corresponding to x_k to location y_k $\Rightarrow x_k \rightarrow y_k$
Histogram Modification and Equalization

- **Example:** \(L = 4 \) \(4 \times 4 \) image \(\Rightarrow \) 16 pixels

\[
F_i(x_k) = \sum_{l=0}^{k} h_i(x_l)
\]

\[
F_i(0) \leq F_o(1) \Rightarrow 0 \rightarrow 1
\]

\[
F_o(1) < F_i(1) = 12 \leq F_o(2) \Rightarrow 1 \rightarrow 2
\]

\[
F_o(1) < F_i(2) = F_o(2) \Rightarrow 2 \rightarrow 2
\]

\[
F_o(2) < F_i(3) = F_o(3) \Rightarrow 3 \rightarrow 3
\]