Vector Radix FFT Algorithm

- Multidimensional rederivation of the 1-D FFT
- Divide-and-conquer algorithm
 - Operates as a recursive procedure
 - Solves problem by dividing it into smaller problems that are the same and then combining answers
- Examples of divide-and-conquer algorithms
 - 1-D FFT
 - Eklundh’s transposition procedure
 - Vector-Radix
- **Note:**
 - The R-C algorithm divided the problem into column/row 1-D DFTs and not into multidimensional DFTs \(\Rightarrow\) not into similar problems \(\Rightarrow\) not divide-and-conquer algorithm
Vector Radix FFT Algorithm

• **1-D FFT**

\[X(K) = \sum_{n=0}^{N-1} x(n)W_N^{nK}, \quad K = 0,1,\ldots,N-1 \]

Assume N is even:

\[
X(K) = \sum_{n \text{ even}} x(n)W_N^{nK} + \sum_{n \text{ odd}} x(n)W_N^{nK}
\]

\[= G(K) + W_N^K H(K) \]

where G(K) and H(K) can be calculated by using N/2-point DFTs.
Vector Radix FFT Algorithm

- **2-D FFT**
 Assume array is square for convenience: \(N_1 = N_2 = N \)
 and that \(N_1, N_2 \) are composite (i.e., not prime; have several factors).
 The most convenient factors are power-of-2.
 Example: If \(N = 2^v \) ⇒ Radix.2 algorithm
 If \(N = R^v \) ⇒ Radix-R algorithm

Let \(N_1 = N_2 = N = 2^v \) ⇒ Radix\((2 \times 2)\)

\[
X(K_1, K_2) = \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} x(n_1, n_2) W_N^{n_1 K_1} W_N^{n_2 K_2};
\]
\(0 \leq K_1 \leq N - 1 \)
\(0 \leq K_2 \leq N - 1 \)
Vector Radix FFT Algorithm

- 2D FFT Decimation-In-Time algorithm

\[
X (K_1, K_2) = \sum_{n_1 \text{ even}, \ n_2 \text{ even}} x(n_1, n_2) W_N^{n_1 K_1} W_N^{n_2 K_2} + \sum_{n_1 \text{ even}, \ n_2 \text{ odd}} x(n_1, n_2) W_N^{n_1 K_1} W_N^{n_2 K_2}
\]

\[
+ \sum_{n_1 \text{ odd}, \ n_2 \text{ even}} x(n_1, n_2) W_N^{n_1 K_1} W_N^{n_2 K_2} + \sum_{n_1 \text{ odd}, \ n_2 \text{ odd}} x(n_1, n_2) W_N^{n_1 K_1} W_N^{n_2 K_2}
\]

Note:
- If \(n_1 \) even \(\Rightarrow \) \(n_1 = 2m_1 \)
- If \(n_1 \) odd \(\Rightarrow \) \(n_1 = 2m_1 + 1 \)
Vector Radix FFT Algorithm

- **2D FFT Decimation-In-Time algorithm**

\[
X(K_1, K_2) = \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1, 2m_2) W_N^{2m_1K_1} W_N^{2m_2K_2}
\]

\[
= \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1, 2m_2 + 1) W_N^{2m_1K_1} W_N^{(2m_2+1)K_2}
\]

\[
= \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1 + 1, 2m_2) W_N^{(2m_1+1)K_1} W_N^{2m_2K_2}
\]

\[
= \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1 + 1, 2m_2 + 1) W_N^{(2m_1+1)K_1} W_N^{(2m_2+1)K_2}
\]

Note:

\[
W_N^{2m_1K_1} = e^{-j\frac{2\pi}{N}2m_1K_1} = e^{-j\frac{2\pi}{N/2}m_1K_1} = W_{N/2}^{m_1K_1}
\]
Vector Radix FFT Algorithm

- **2D FFT Decimation-In-Time algorithm**

\[
X(K_1, K_2) = \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1, 2m_2)W_{N/2}^{m_1K_1}W_{N/2}^{m_2K_2} \\
+ W_N^{K_2} \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1, 2m_2 + 1)W_{N/2}^{m_1K_1}W_{N/2}^{m_2K_2} \\
+ W_N^{K_1} \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1 + 1, 2m_2)W_{N/2}^{m_1K_1}W_{N/2}^{m_2K_2} \\
+ W_N^{K_1}W_N^{K_2} \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1 + 1, 2m_2 + 1)W_{N/2}^{m_1K_1}W_{N/2}^{m_2K_2}
\]

- **Define**

\[
S_{ij}(K_1, K_2) = \sum_{m_1=0}^{N/2-1} \sum_{m_2=0}^{N/2-1} x(2m_1 + i, 2m_2 + j)W_{N/2}^{m_1K_1}W_{N/2}^{m_2K_2}
\]
Vector Radix FFT Algorithm

- 2D FFT Decimation-In-Time algorithm

\[X(K_1, K_2) = S_{00}(K_1, K_2) + W_N^{K_1} S_{01}(K_1, K_2) + W_N^{K_2} S_{10}(K_1, K_2) + W_N^{(K_1+K_2)} S_{11}(K_1, K_2) \]

where

\[S_{ij}(K_1, K_2) = \sum_{m_1=0}^{\frac{N-1}{2}} \sum_{m_2=0}^{\frac{N-1}{2}} x(2m_1 + i, 2m_2 + j) W_N^{m_1 K_1} W_N^{m_2 K_2}, \quad 0 \leq K_1 \leq \frac{N}{2} - 1 \]

\[0 \leq K_2 \leq \frac{N}{2} - 1 \]

Note: If \(i = 1 \), multiply \(S_{ij} \) by \(W_N^{K_i} \)

If \(j = 1 \), multiply \(S_{ij} \) by \(W_N^{K_2} \)

- \(S_{00}, S_{01}, S_{10}, S_{11} \) : \(N/2 \)-point DFTs
- Still need to calculate \(X(K_1, K_2) \) for \(K_1 \) and \(K_2 \) between \(N/2 \) and \(N \)
 - This is simplified by the fact that \(S_{ij}(K_1, K_2) \) is periodic with period \(N/2 \) in \(K_1 \) and \(K_2 \):

\[S_{ij}(K_1, K_2) = S_{ij}(K_1 + N/2, K_2) = S_{ij}(K_1, K_2 + N/2) = S_{ij}(K_1 + N/2, K_2 + N/2) \]

- **Note:** \(W_N^{N/2} = e^{j\pi} = -1 \)

So, when \(N/2 \) is added to a variable (\(K_1 \) or \(K_2 \)), reverse the sign of \(W_N \) having that variable as exponent.
Vector Radix FFT Algorithm

- **2D FFT Decimation-In-Time algorithm**

\[
X(K_1, K_2) = S_{00}(K_1, K_2) + W_N^{K_2} S_{01}(K_1, K_2) + W_N^{K_1} S_{10}(K_1, K_2) + W_N^{(K_1+K_2)} S_{11}(K_1, K_2)
\]

\[
X(K_1 + N/2, K_2) = S_{00}(K_1, K_2) + W_N^{K_2} S_{01}(K_1, K_2) - W_N^{K_1} S_{10}(K_1, K_2) - W_N^{(K_1+K_2)} S_{11}(K_1, K_2)
\]

\[
X(K_1, K_2 + N/2) = S_{00}(K_1, K_2) - W_N^{K_2} S_{01}(K_1, K_2) + W_N^{K_1} S_{10}(K_1, K_2) - W_N^{(K_1+K_2)} S_{11}(K_1, K_2)
\]

\[
X(K_1 + N/2, K_2 + N/2) = S_{00}(K_1, K_2) - W_N^{K_2} S_{01}(K_1, K_2) - W_N^{K_1} S_{10}(K_1, K_2) + W_N^{(K_1+K_2)} S_{11}(K_1, K_2)
\]

- **Note:**

\[
0 \leq K_1 \leq N/2 - 1
\]

\[
0 \leq K_2 \leq N/2 - 1
\]

- **Procedure:**

1. 4 smaller DFTs \(S_{00}, S_{01}, S_{10}, S_{11} \) need to be calculated
2. By doing three different complex multiplications, we obtain 4 samples of the DFT, for a given \((K_1, K_2)\), \(0 \leq K_1, K_2 \leq N/2 - 1\)
3. \(S_{00}, S_{01}, S_{10}, S_{11} \) are calculated by repeating same procedure
Vector Radix FFT Algorithm

- **2D FFT Decimation-In-Time algorithm**
 - **Implementation:**
 Basic unit in structure is called a “Butterfly” (even though it looks more like a Butterfly in 1-D case)
 - **Basic Butterfly:**

\[
\begin{align*}
S_{00}(K_1, K_2) & \quad X(K_1, K_2) \\
S_{01}(K_1, K_2) & \quad W_N^{K_2} X(K_1 + N/2, K_2) \\
S_{10}(K_1, K_2) & \quad W_N^{K_1} X(K_1, K_2 + N/2) \\
S_{11}(K_1, K_2) & \quad W_N^{K_1+K_2} X(K_1 + N/2, K_2 + N/2)
\end{align*}
\]
Vector Radix FFT Algorithm

- **2D FFT Decimation-In-Time algorithm**

 ➢ Computations
 - #CMULTs = 3 / Butterfly
 - #CADDs = 12 (= 3×4) / Butterfly
 since 3 CADDs / DFT sample, and 4 DFT samples / Butterfly

 Note: one can reduce #CADDs to 8 (refer to Problem 2.11 in Dudgeon & Mersereau)
 - #stages required for 2-D N×N-point FFT = \(\log_2 N = \nu \), for \(N = 2^\nu \)
 - #Butterfly per stage = \(\frac{N^2}{4} \)
 Why? we have N×N initial points;
 I = # of inputs per stage = \(N^2 \); each Butterfly takes care of 4 inputs
 O = # of outputs per stage = \(\frac{N^2}{4} \)

 ➢ Summary:

 \[
 \text{# CMULTS} = (3 \text{ CMULTs/Butt}) \left(\frac{N^2}{4} \text{ Butt/stage} \right) \left(\log_2 N \text{ stages} \right) \\
 = \frac{3N^2}{4} \log_2 N
 \]

 \[
 \text{#CADDs} = (8 \text{ CADDs/Butt}) \left(\frac{N^2}{4} \text{ Butt/stage} \right) \left(\log_2 N \text{ stages} \right) \\
 = 2N^2 \log_2 N
 \]
M-Dimensional Vector-Radix FFT

- Array of size \(N \times N \times N \ldots \times N \)
- Same basic Butterfly but different # of input/output points
- Complexity:
 - # inputs/outputs per stage = \(N^M \)
 - # inputs per Butterfly = \(2^M \) \(N^M \) \(N^M \)
 - # Butterflies per stage = \(\frac{N^M}{2^M} = \left(\frac{N}{2} \right)^M \)
 - # stages = \(\log_2 N = \nu \), for \(N = 2^\nu \)
 - # CMULTs/Butt = (# inputs/Butt-1) = \(2^M - 1 \)

Total # CMULTs = \((2^M - 1).\left(\frac{N}{2} \right)^M.(\log_2 N) = \frac{2^M - 1}{2^M}.N^M \log_2 N \)
M-Dimensional Vector-Radix FFT

• Comparison with R-C algorithm
 ➢ Computation:
 ✓ # CMULTs for R-C $= \frac{N^M}{2} \log_2 N^M = \frac{MN^M}{2} \log_2 N$
 ✓ # CMULTs for M-D FFT $= \frac{2^M - 1}{2^M} N^M \log_2 N$

 ➢ Storage
 ✓ M-D FFT requires more storage for $M>2$: at least 2^{M-1} rows required to be stored at a time for efficient computation plus one additional entire data read/write cycle needed first to perform the bit-reversed ordering of the data.

 ➢ I/O Passes
 ✓ Assuming that 2^{M-1} rows are stored in memory for R-C, M-D Vector-Radix FFT requires one additional I/O pass (read/write of entire data) at initial step to rearrange samples in bit-reversed order.